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Abstract. The node structure of the superconducting order parameter of the heavy-fermion system
UPd2Al3 is analyzed within the weak-coupling theory. A pairing interaction induced by the exchange
of antiferromagnetic spin excitations is assumed as suggested by recent inelastic neutron scattering ex-
periments and tunneling spectroscopy. The multi-sheeted Fermi surface is taken into account. Based on a
model susceptibility for the simple antiferromagnetic structure of UPd2Al3, line nodes result at the rim of
the magnetic Brillouin zone.

PACS. 74.70.Tx Heavy-fermion superconductors – 74.20.Mn Nonconventional mechanisms (spin
fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi
liquid, Luttinger liquid, etc.) – 74.50.+r Proximity effects, weak links, tunneling phenomena, and Josephson
effects

1 Introduction

In the heavy-fermion system UPd2Al3 superconductiv-
ity below Tc = 2 K coexists with antiferromagnetic or-
der setting in at TN = 14.5 K [1]. The magnetic state
of this hexagonal compound is formed by ferromagnetic
easy planes of the U-moments stacked antiferromagneti-
cally along the crystallographic c-axis [2].

Recent measurements of the characteristic energy
losses for momentum transfers at and in the vicinity of
the magnetic Bragg vector (001/2) showed two noticeable
features: a strongly damped spin-wave excitation with an
excitation energy of about 1.5 meV [3], and an energy loss
peak in the superconducting state corresponding to the
opening of the energy gap [4–6]. These neutron scatter-
ing results were corroborated by tunneling spectroscopy
on cross-type UPd2Al3/AlOx /Pb tunnel junctions based
on UPd2Al3 thin films [7,8]. A well developed energy gap
along the crystallographic c-axis was observed. Further-
more, a modulation of the tunneling conductivity at an
energy of about 1.2 meV was attributed to the coupling
of the quasiparticle excitations to the antiferromagnetic
spin wave. Strong-coupling effects in the tunneling den-
sity of states of conventional superconductors, like Pb
and Hg, are caused by phonon modes that contribute the
dominant part of the pairing interaction. In analogy, the
strong-coupling effect observed in the UPd2Al3 tunneling
spectra lends strong support to the assumption that the
superconductivity in UPd2Al3 is caused by the exchange
of antiferromagnetic spin excitations [8]. This is consis-
tent with the observed pronounced Pauli-limiting in the
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upper critical field that indicates the formation of a singlet
pairing state [9,10].

Assuming such a pairing interaction, quite general ar-
guments can be given concerning the structure of the
superconducting order parameter based on the known
properties of UPd2Al3. Due to a pronounced magnetic
anisotropy the spins tend to fluctuate in the basal
planes [6]. It then follows that the pair partners cannot
reside in the same plane due to a strong pair-breaking ef-
fect caused by the ferromagnetic spin alignment. The pairs
might be formed by quasiparticles in neighbouring planes.
This necessarily leads to a node in the spatial pair func-
tion for vanishing quasiparticle distance. Accordingly, the
order parameter in k-space is anisotropic. We wish to sub-
stantiate these general arguments by analyzing the node
structure of the superconducting order parameter on the
multi-sheeted Fermi surface of UPd2Al3.

2 Derivation of the gap equation

Our analysis is based on a BCS pairing Hamiltonian
in which the pairing interaction is governed by the
momentum-dependent part of the dynamic spin suscepti-
bility. This situation is similar to the case of conventional
weak-coupling superconductors, where the zero-frequency
limit of the phonon propagator plays the role of the po-
tential for the phonon-mediated attraction between elec-
trons [11]. Assuming a susceptibility that factorizes into a
momentum- and an energy-dependent part the anisotropy
of the order parameter in the weak-coupling and strong-
coupling limit are identical. For the present analysis
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of the node structure it is then sufficient to limit the dis-
cussion to the weak-coupling limit. Strong-coupling effects
in this compound are discussed elsewhere [12].

We use a Fermi gas model in which a strong zero-
range repulsion I is acting between two quasiparticles with
strong f -character having antiparallel spin. The resulting
interaction Hamiltonian in the singlet channel reads [11]

Hint = −1
4

∑
nn′

∑
kk′

Jnn′(k− k′)
(

2a+
nk↑a

+
n−k↓an′−k′↑an′k′↓

+2a+
nk↓a

+
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+
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. (1)

The sum over the wave vectors k, k′ is limited to the
respective bands n, n′. We express the coupling J(q) in
terms of the q-dependent susceptibility χ(q) within the
random phase approximation

Jnn′(q) =
I

2
(1 + Iχnn′(q)) . (2)

This crude approximation is justifiable if χnn′(q) is re-
garded as a phenomenological parameter, similar to the
Landau parameters in Fermi liquid theory [11,13]. Its mo-
mentum dependence is, at least for selected regions in re-
ciprocal space, accessible by experiment [14].

The pairing Hamiltonian

H = Hkin +Hint =
∑
n

∑
kσ

ξnka
+
nkσankσ +Hint (3)

can be diagonalized by a canonical transformation [15].
With the anomalous expectation values bσ−σnk defined as

bσ−σnk = 〈an−kσank−σ〉, (4)

and by introducing the new fermionic operators
(cnkα, cnkβ)

ank↑ = u∗nkcnkα + vnkc
+
nkβ

a+
n−k↓ = −v∗nkcnkα + unkc

+
nkβ , (5)

the resulting mean-field Hamiltonian is diagonal provided
that the following T = 0 self-consistency condition for
the singlet order parameter ∆nk = 1/2× (∆↑↓nk −∆

↓↑
nk) is

fulfilled

∆nk = −1
8

∑
n′

′∑
k′

Jnn′(k− k′)
∆n′k′√

ξ2
n′k′ + |∆n′k|2

(6)

in which we used the following definition

∆↑↓nk = −
∑
n′

′∑
k′

Jnn′(k− k′)b↑↓n′k′ . (7)

The prime on the momentum sum indicates the limita-
tion to those k-values within a small interaction shell such
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Fig. 1. q-dependent susceptibility according to equation (8)
(dashed line) and (10) (solid line) along high symmetry direc-
tions of the Brillouin zone of the chemical unit cell (inset).

that |ξn′k′ | < εc. An important difference to the form of
the self-consistency equation for electron-phonon coupling
is manifest in the negative prefactor in equation (6). Ac-
cording to equation (2) Jnn′ is positive comprising a q-
independent part that includes the local Coulomb repul-
sion and a q-dependent part governed by the susceptibility.
As a result, the isotropic pairing interaction is repulsive.
Solutions are possible if Jnn′(q) > 0 peaks at some finite
q-vector owing to the q-dependence of the susceptibility
χnn′(q). The resulting pairing state can belong to the fully
symmetric irreducible representation A1g of the hexago-
nal point group D6h, but must then exhibit line nodes in
conjunction with sign changes of the order parameter on
the Fermi surface. Alternatively, less symmetric one- or
two-dimensional irreducible representations can be real-
ized [16].

In the present case the spin-response function has to
peak at the Brillouin zone boundary in z-direction (A-
point) of the chemical unit cell due to the simple antifer-
romagnetic structure of UPd2Al3. As a consequence of the
multi-sheet topology of the Fermi surface [17] intraband
and interband transitions have to be considered. Lacking
any detailed knowledge of the respective contributions to
χnn′(q) we treat two limiting cases: χnn′(q) = χ(q)δnn′ or
χnn′(q) = χ(q). On those parts of the Fermi surface which
are most likely relevant to the pairing interaction, the q-
dependence of the order parameter is essentially identical
in these limiting cases, as will be shown below. Thus, even
for a more realistic model, that properly includes inter-
and intraband contributions, the node structure will not
change significantly. Based on the simple antiferromag-
netic structure of UPd2Al3 we use the following model
form for χ(q)

Iχ(q) = Iχ0 [1 + b(1− cos (qzc))] (8)

which is shown in Figure 1 for various high-symmetry di-
rections in the Brillouin zone of the chemical unit cell.
b = 10.5 is chosen in correspondence with measurements
of the static susceptibility and neutron-scattering results
which give χ(qz = π/c)/χ(0) ' 20 [18].
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Fig. 2. Cross-sectional sketch of the Fermi surface of UPd2Al3
including only the sheets which were used in the calculations.
The magnetic Brillouin zone is shown by the dashed lines. See
text for details.

The self-consistency equation shall now be solved for
the Fermi-surface of UPd2Al3. The Fermi surface consists
of four sheets, three of which are electron-like and one
hole-like [17]. This Fermi surface topology derived from
band structure calculations is corroborated by de-Haas-
van-Alphen measurements [19]. In the present case we
have to estimate the relevance of the different sheets for
the pairing interaction. From superconducting tunneling
spectroscopy along the crystallographic c-axis we deduce
that Fermi surface sheets having components along Γ −A
are important since an energy gap was observed in this di-
rection [7,8]. This comprises the sheet which is commonly
referred to as the “egg” part of the Fermi surface as shown
in a cross-sectional view in Figure 2. Furthermore, the ex-
istence of line nodes of the superconducting order param-
eter is suggested by various experiments, such as nuclear
magnetic resonance [20], thermal conductivity [21], and
the angular dependence of the upper critical field mea-
sured on thin films [10]. As will be shown below, the
q-dependent susceptibility induces the formation of line
nodes on Fermi-surface sheets centered between the K-
and H-point. We therefore include the electron-like Fermi
surface sheet referred to as “cigar”. Contributions from
the remaining two sheets are unlikely. Their inherent two-
dimensional topology should be reflected in a strongly
anisotropic contribution to the superconducting proper-
ties which have not been observed in UPd2Al3. We there-
fore exclude these Fermi surface sheets from our analysis.
The possibility of the existence of different electron sub-
states of 5f character, only one of which involving the
heavy quasiparticles, was already discussed in the analy-
sis of pressure-dependent specific heat measurements [22]
and muon spin rotation experiments [23]. Clear differ-
ences in the degree of 5f orbital character on the dif-
ferent Fermi surface sheets were also deduced from the
band structure calculations [17]. In this context we refer to
analogous considerations which were drawn from the dis-
persion of the spin-excitations close to the antiferromag-
netic Bragg point [14]. Nevertheless, the assumption of the

Fermi surface having parts that do not contribute to the
condensate poses some problems. Additional low-energy
excitations result which should be detectable in specific
heat and various other measurements. This issue might
be resolved in conjunction with the opening of an exci-
tation gap in the antiferromagnetic state, as was deduced
by the low-temperature behaviour of the electrical resistiv-
ity [24] and shown directly by inelastic neutron scattering
experiments [4–6].

With the onset of antiferromagnetic order the symme-
try is reduced to orthorhombic with the moments point-
ing along the x-axis. Since the deviations from hexagonal
symmetry are small [17], they are ignored in our analy-
sis. We furthermore simplify the Fermi surface to uniaxial
anisotropy, i.e. the Fermi surface used for our calculation
is obtained by rotating the cross-sectional sketch shown
in Figure 2 around the Γ −A axis. Due to the ellipsoidal
topology of the “eggs” and “cigars” we use an effective
mass model for the quasiparticle dispersion ξq. This re-
sults in the following form of equation (6)

∆nk = − Vol
(2π)2

m0c
2

(~c)2

∑
n′

∑
k′∈SF ′

Im∗n′/m0

16
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(
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√
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√
ε2c − |∆n′k′ |2

)
. (9)

θk′ is the polar angle on the respective Fermi surface
sheets.

This equation is solved by numerical integration and
iteration until self-consistency is obtained. The parame-
ter values are chosen as follows: effective band masses
m∗n′/m0 = 1, Iχ0 = 2.4 and I = 230 meV from the
band structure calculations [17], and the cutoff energy
εc = 4 meV. As a starting point for the iteration the ini-
tial form of the order parameter is chosen to be symmetric
with respect to the Γ point. The gap size on the “egg” and
“cigar” part of the Fermi surface is initially set to 0.3 meV
in accordance with the gap size from our tunneling exper-
iments. The result based on the model susceptibility of
equation (8) are shown in Figure 3a including interband
transitions. We obtain a node-less but anisotropic order
parameter on the “egg” parts of the Fermi surface and line
nodes on the “cigars”. The gap sizes, as summarized in
Table 1, have the right order of magnitude when com-
pared to the experimental value measured for the “egg”
sheets [8]. Nevertheless, the obtained anisotropy on the
“eggs” is too pronounced. The tunneling experiments
show a single gap-like structure in the c-axis direction.
Since in the tunneling experiments the broken transla-
tional symmetry across the tunneling barrier leads to an
averaging of all the gap sizes in c-direction, the result-
ing tunneling density of states according to our calcula-
tion would result in a double-gap feature. This is shown
in Figure 4a (dashed line). This result is a direct conse-
quence of the simple form we chose for the q-dependent
susceptibility. As can be seen for the “egg” topology, Fermi
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Fig. 3. The order parameter on the different Fermi surface
sheets according to the q-dependent susceptibilities in (a) equa-
tion (8) and (b) equation (10). The Fermi surface sheets are
shown in thick lines. The size of the order parameter is param-
eterized by the distance to the respective Fermi-surface sheets.
The sign of the order parameter is positive if drawn on the out-
side of the Fermi surface and negative if drawn on the inside.

Table 1. Calculated order parameter excluding interband
transitions (#1, #2) and including interband transitions (#3,
#4) using the q-dependent susceptibilities as indicated. See
text for details.

# Sheet χ(q) ∆(θ = 0) ∆(θ = π) ∆(π)
∆(0)

(meV) (meV)

1 “eggs” χ Eq. (8) 0.08 0.25 3.1
2 “eggs” χ Eq. (10) 0.13 0.16 1.2
3 “eggs” χ Eq. (8) 0.17 0.56 3.3

“cigars” −0.49 0.49 −1.0
4 “eggs” χ Eq. (10) 0.31 0.36 1.2

“cigars” −0.50 0.50 −1.0

surface nesting effects might be important and add ad-
ditional structure to the q-dependence. To illustrate this
effect we modify the susceptibility to

Iχ(q) = Iχ0 [1 + b(4/3− cos (qzc)− 1/3 cos (3qzc))]
(10)

with b = 8.0 which now comprises the first two elements
of the Fourier series for a staggered moment in c-direction
(see Fig. 1). The resulting order parameter is shown in
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Fig. 4. (a) Calculated differential conductivities at T = 0.3 K
for two different gap anisotropies according to the q-dependent
susceptibility given in equation (8) (dashed line) and
equation (10) (solid line). (b) Measured differential conduc-
tivity at T = 0.3 K in an applied magnetic field of 0.3 T. The
solid line corresponds to a fit of the data using the Dynes for-
mula with a gap size of ∆ = 235 µeV, a broadening parameter
of 35 µeV, and a leakage conductivity of 0.1 a.u. [8].

Figure 3b. Figure 4a (solid line) shows the respective dif-
ferential conductivity. The gap anisotropy along the Γ−A
direction on the “eggs” is now reduced to about 20 percent
which could account for part of the observed broadening
in the tunneling experiments shown in Figure 4b.

Any further improvements would have to rely on a
better knowledge of the q-dependent susceptibility. Also,
the energy-dependence of the order parameter has been
ignored. By including strong-coupling effects the mea-
sured conductivity modulation at about 1.2 meV can
be related to the magnon excitation observed in the
neutron-scattering experiments. First results based on the
Eliashberg theory are presented elsewhere [12].

3 Conclusion

We conclude by discussing the node structure proposed
here with respect to the experimental information avail-
able so far. Inelastic neutron scattering experiments and
tunneling spectroscopy have shown that an energy gap
in c-direction exists. The visibility of the energy gap in
the neutron scattering experiments at the magnetic Bragg
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point implies that the pair function is periodically chang-
ing its sign in c-direction analogous to the magnetic order
parameter. In this context we specifically refer to [14]. Fur-
ther experimental results point towards line nodes in the
order parameter. Nodes and sign changes of the supercon-
ducting order parameter cannot be justified on the basis of
a pure electron-phonon coupling mechanism. On the other
hand, within our model assumptions of antiferromagnetic
spin-excitation coupling they are mandatory based on the
given Fermi surface. Furthermore, a strong-coupling fea-
ture observed in the tunneling experiments gives evidence
for a spin-excitation pairing interaction in analogy to the
reasoning used in conventional superconductors. Conse-
quently, antiferromagnetic pair coupling is very likely to
be the reason for superconductivity in UPd2Al3.

We consider the following issues to be highly interest-
ing for further investigations. On the theoretical side, Tc

calculations based on the Eliashberg strong-coupling the-
ory would be desirable. These would have to show that a
Tc of about 2 K is possible for a magnetic pairing mech-
anism in UPd2Al3. It would also have to be shown that
the order parameter transforming according to the higher
order basis functions of the A1g-representation results in-
deed in the largest Tc. On the experimental side, inves-
tigations of the gap anisotropy are needed. So far, an
analysis of the angular dependence of the upper critical
field was performed for a simplified one-sheet ellipsoidal
Fermi surface [10]. This has to be redone based on the now
known Fermi surface in order to separate Fermi-surface in-
duced anisotropies in Hc2 from those anisotropies which
might be due to nodes in the order parameter. One of
the most direct probes for the gap anisotropy is given by
tunneling spectroscopy along various crystallographic di-
rections. Additionally, pair-tunneling is sensitive to the
phase changes of the superconducting order parameter.
We believe that thin film investigations can make further
important contributions to this field.

During the preparation of this manuscript M. H. enjoyed stim-
ulating and helpful discussions with N. Bernhoeft, A. Goltsev,
F. Anders, and L. Sandratskii. This work was supported by
the Deutsche Forschungsgemeinschaft through SFB 252.
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